Container Native Virtualization (Kubevirt): The Future for Virtual Machines is Here!

kubevirt_logo

Overview

Immediately after Solomon Hykes first showed Docker to the public at PyCon in 2013, in his now famous “docker run demo”, IT folk started asking, what does this mean for virtualization? We only spent the previous 10-15 years virtualizing, seemingly everything, so understandably people were slightly apprehensive. Industries had been built and careers established, clearly virtualization would be an important part of the future and not simply replaced, right?

In this article we will aim to understand the value of virtualization in a container-driven world, explore the current virtualization capabilities in Kubernetes and get started with Container Native Virtualization (Kubevirt) using Red Hat’s Kubernetes enterprise distribution, OpenShift.

Continue reading

It’s a PaaS: Vanilla Kubernetes vs OpenShift on OpenStack Lab Setup Guide

Kubernetes-logo is_not_4 OpenShift-LogoType.svg

Overview

Often a lot of people seem to confuse Kubernetes with OpenShift or a platform-as-a-service (PaaS). Kubernetes is of course on it’s own, not. It is an orchestration layer or technology for containers but a lot is missing to really call it a platform. OpenShift is Red Hat enterprise Kubernetes platform. It contains Kubernetes but also a whole lot more which make it a true platform. So which is right for you? It depends a lot on your requirements and what you are trying to achieve. The purpose of this article is to setup an environment for running a workshop that compares the Kubernetes experience with OpenShift in order to gain more insight and understanding in what you may actually need. Many people sit down with slides or at a whiteboard, but I really find that is not adequate and you really need to experience it, first hand.

Continue reading

OpenShift: Getting Started with the Service Broker

Logotype_RH_OpenShiftContainerPlatform_wLogo_CMYK_Black

Overview

In this article we will look at the OpenShift service broker, understand how to integrate external services into OpenShift and even create a custom broker. First before we begin a big thanks to Marek Jelen and Paul Morie, Red Hatters who both helped me understand the service broker in greater detail.

Obviously if you are reading this article you already understand microservices, containers and why it is all so incredible awesome on OpenShift. Of course everything should be in a container but unfortunately it is going to take a while to get there. As we start dissecting and breaking down the monolithic architectures of the past, likely there will be a mix of lightweight services running in containers on OpenShift and other more heavy services (databases, ESBs, etc) running outside. In addition while the service catalog in OpenShift is vast, even allowing you to add your own custom services for anything that can run in OpenShift as-a-container using a template, there will be the need, especially with public cloud to connect to external services. Both of these use cases, on-premise external services and off-premise cloud services really made it obvious that a service broker and more robust service catalog was needed. Originally OpenShift did not have a service broker so you couldn’t easily consume external services. All that existed was the service catalog and templates, so every service had to be a container running on OpenShift. Thankfully other companies also saw a need for an open service abstraction and the Open Service Broker API was born as an opensource project.

Continue reading

Disaster Recovery with Containers? You Bet!

disaster-recovery

Overview

In this article we will discuss the benefits containers bring to business continuance, reveal concepts for applying containers to disaster recovery and of course show disaster recovery of a live database between production and DR OpenShift environments. Business continuance of course is all about maintaining critical business functions, during and after a disaster has occurred.  Business continuance defines two main criteria: recovery point objective (RPO) and recovery time objective (RTO). RPO amounts to how much data loss is tolerable and RTO how quickly services can be restored when a disaster occurs. Disaster recovery outlines the processes as well as technology for how an organization responds to a disaster. Disaster recovery can be viewed as the implementation of RPO and RTO. Most organizations today have DR capabilities but there many challenges.

  • Cost – DR usually is at least doubles the price.
  • Efficiency – DR requires regular testing and in the event of a disaster, resources must be available. This leads to idle resources for 99.9% of the time.
  • Complexity – Updating applications is complex enough but DR requires a complete redeployment where the DR side almost never mirrors production due to cost.
  • Outdated – Business continuance only deals with one aspect,  disaster recovery but as mentioned cloud-native applications are active/active so to be effective today, business continuance architectures must cover DR and multi-site.
  • Slow – DR often is not 100% automated and recovery is often dependent on manual procedures that may not be up to date or even tested with the latest application deployment.

I would take these challenges even further and suggest that for many organizations business continuance and DR is nothing more than a false safety net. It costs a fortune and in the event of a true disaster probably won’t be able to deliver RPO and RTO for all critical applications. How could it when DR is not part of the continuous deployment pipeline and being tested with each application update? How could it with the level of complexity and scale that exists today and not 100% automation?

Continue reading

OpenShift on OpenStack 1-2-3: Bringing IaaS and PaaS Together

openshift-logotype-svgplus_signopenstack

Overview

In this article we will explore why you should consider tackling IaaS and PaaS together. Many organizations gave up on OpenStack during it’s hype phase, but in my view it is time to reconsider the IaaS strategy. Two main factors are really pushing a re-emergence of interest in OpenStack and that is containers and cloud.

Containers require very flexible, software-defined infrastructure and are changing the application landscape fast. Remember when we had the discussions about pets vs cattle? The issue with OpenStack during it’s hype phase was that the workloads simply didn’t exist within most organizations, but now containers are changing that, from a platform perspective. Containers need to be orchestrated and the industry has settled in on Kubernetes for that purpose. In order to run Kubernetes you need quite a lot of flexibility at scale on the infrastructure level. You must be able to provide solid Software Defined Networking, Compute, Storage, Load Balancing, DNS, Authentication, Orchestration, basically everything and do so at a click of the button. Yeah we can all do that, right.

If we think about IT, there are two types of personas. Those that feel IT is generic, 80% is good enough and for them, it is a light switch: on or off. This persona has no reason whatsoever to deal with IaaS and should just go to the public cloud, if not already there. In other words, OpenStack makes no sense. The other persona feel IT adds compelling value to their business and going beyond 80% provides them with distinct business advantages. Anyone can go to public cloud but if you can turn IT into a competitive advantage then there may actually be a purpose for it. Unfortunately with the way many organizations go about IT today, it is not really viable, unless something dramatic happens. This brings me back to OpenStack. It is the only way an organization can provide the capabilities a public cloud offers while also matching price, performance and providing a competitive advantage. If we cannot achieve the flexibility of public cloud, the consumption model, the cost effectiveness and provide compelling business advantage then we ought to just give up right?

I also find it interesting that some organizations, even those that started in the public cloud are starting to see value in build-your-own. Dropbox for example, originally started using AWS and S3. Over last few years they built their own object storage solution, one that provided more value and saved 75 million over two years. They also did so with a fairly small team. I certainly am not advocating for doing everything yourself, I am just saying that we need to make a decision, does IT provide compelling business value? Can you do it for your business, better than the generic level playing field known as public cloud? If so, you really ought to be looking into OpenStack and using momentum behind containers to bring about real change.

Continue reading

Containers in Large IT Enterprises

thinkstockphotos-464267243-100668861-large

Overview

As this will be the last article of 2017 I wanted to do something different and get away from my typical how-to guides (rest assured I will continue doing them in 2018). Over the past year, I have engaged in a lot of conversation with many large organizations looking to adopt or increase their container footprint. In this article I will share my thoughts on what I have learned from those discussions. We will discuss the impact of containers in large IT organizations. Understand the difference between container technology and container platform. Look into the integration points a container platform has into the existing IT landscape and finally discuss high-level architectural design ideas.

This article should serve as a good starting point for IT organizations trying to understand how to go about adopting container technology in their organization.

Continue reading

OpenShift: Accessing External Services using Egress Router

openshift-logotype-svg

Overview

Egress traffic is traffic going from OpenShift pods to external systems, outside of OpenShift. There are two main options for enabling egress traffic. Allow access to external systems from OpenShift physical node IPs or use egress router. In enterprise environments egress routers are often preferred. They allow granular access from a specific pod, group of pods or project to an external system or service. Access via node IP means all pods running on a given node can access external systems.

Continue reading